

A NARROWBAND FILTER WITH A WIDE SPURIOUS-FREE STOPBAND*

R. R. Bonetti and A. E. Williams

COMSAT Laboratories, Clarksburg, Maryland

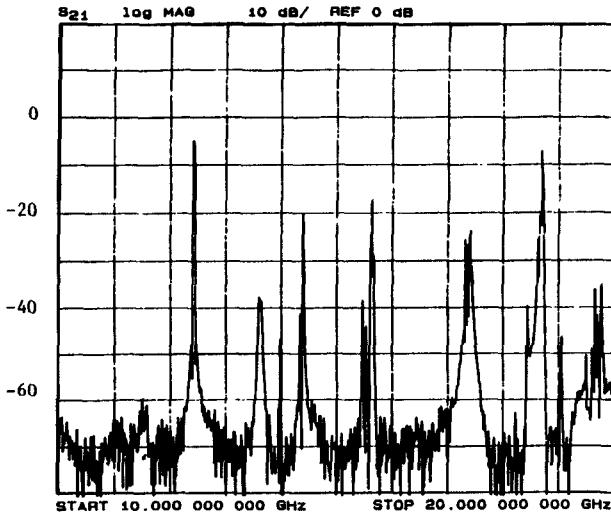
ABSTRACT

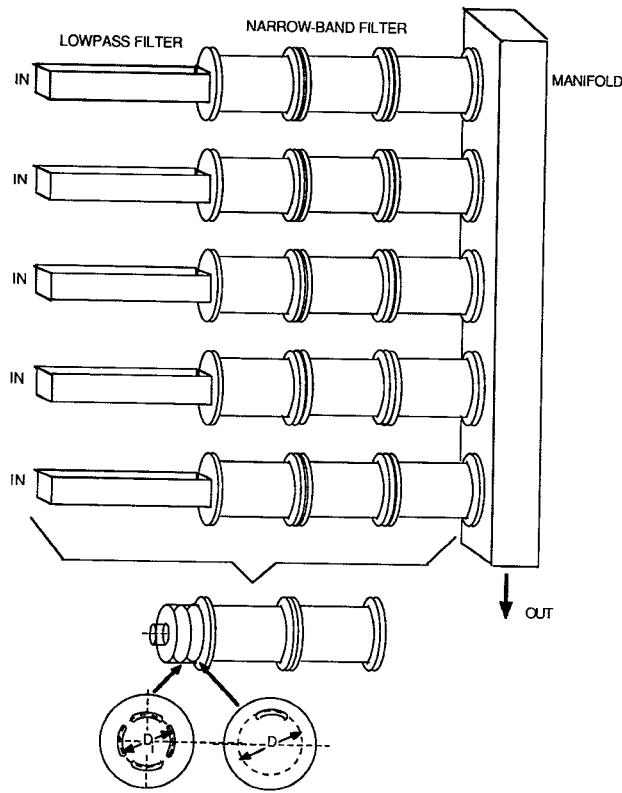
This paper describes a 6-pole, 12-GHz, pseudo-elliptic 76-MHz bandpass filter which achieves a stopband attenuation of greater than 50 dB up to 25 GHz. This design eliminates the need for a separate low-pass filter in applications such as output multiplexers of satellite transponders.

INTRODUCTION

Single, dual, triple, quadruple, and hexa-mode degenerate waveguide cavities are typically used as basic building blocks for high-Q waveguide narrow bandpass filters [1],[2],[3]. Particularly for applications such as combining filters on output multiplexers in communications satellite transponders, it is important not only to achieve high Q or minimum filter loss—to save scarce power resources in space—but also to minimize out-of-band spurious transmissions up to at least twice the filter operating frequency. Unfortunately, conventional waveguide filters suffer from poor stopband performance. Figure 1 illustrates the typical wide transmission response of a dual-mode TE113, Ku-band filter.

Conventional output multiplexer designs eliminate these spurious transmission bands by using a low-pass filter—in series with the output port of an output multiplexer for low-power operation, or in series with each filter at the input ports of the multiplexer for high-power operation (see Figure 2). This paper presents a new type of filter which uses a combination of dual-mode cylindrical cavities and cavities resonant in the cylindrical TM010 mode. Wide stopband transmission at high frequencies was realized by selecting a large down-link ratio for the telemetry cavities and coupling them by a specially designed coupling-suppressing iris.



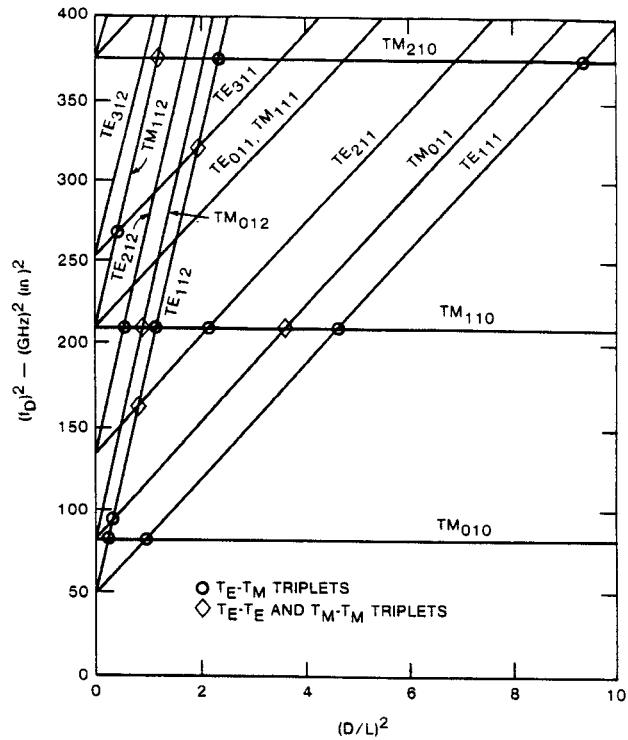

Figure 1. Typical Wideband Frequency Response of Ku-Band, TE113 Dual-Mode Filter

FILTER DESIGN

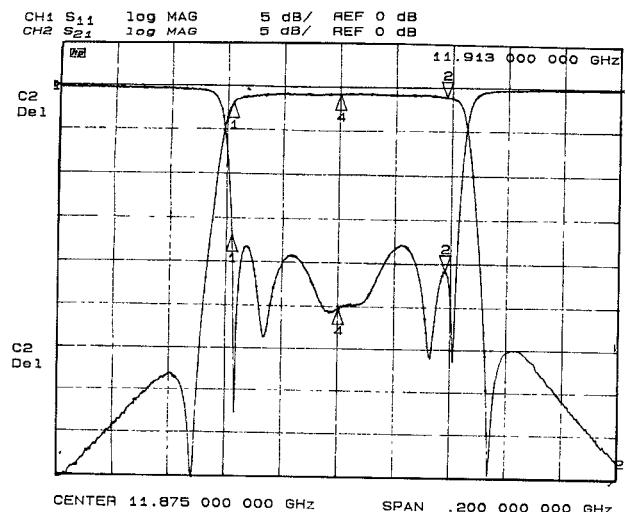
From the standard cylindrical cavity mode chart shown in Figure 3 [4], it is clear that if the TM010 mode cavity is designed to resonate at a diameter-to-length-ratio greater than 3, the only possible spurious resonance up to twice the operating frequency is the TM110 mode. Suppression of the next higher mode, TM210, would also be desirable.

One potential disadvantage in using this mode is its poor unloaded Q (3 to 4K at 12 GHz) compared to 12/13,000 for the dual TE113 mode. Thus, designing a bandpass filter which makes use of the wide stopband properties of the TM010 mode represents a compromise between minimizing the effect of this poor Q and achieving adequate out-of-band attenuation.

* This paper is based on work performed at COMSAT Laboratories under the sponsorship of the Communications Satellite Corporation.


Figure 2. Output Multiplexer Schematic for Both Conventional and Composite Filters

For a typical satellite communications transponder output multiplexer which requires a 6-pole filter response, this compromise results in a design which uses two TM010 cavities in cascade with two dual TE113 cavities.


The sketch in Figure 2 compares the composite 6-pole filter to a standard three-cavity dual TE113 mode design. Coupling into and out of the filter is achieved via a center coaxial probe in the first TM010 cavity and the last TE113 cavity. The filter uses standard coupling between the TE113 modes together with a specially designed iris between the TM010 cavities which allows fundamental mode coupling but suppresses both higher TM modes. A single angular iris couples the second TM010 cavity to the first TE113 mode.

EXPERIMENTAL RESULTS

A 6-pole, 12-GHz bandpass filter was designed to realize a quasi-elliptic transmission response with a 76-MHz bandwidth. Figures 4 and 5 show the in-band and wide-band transmission performance, respectively, of this filter. Figure 6 is a photograph of the experimental filter. Note that spurious rejection of >50 dB was realized to about 25 GHz, and the in-band loss of 0.6 dB compares favorably with the total loss of bandpass and low-pass filters in series.

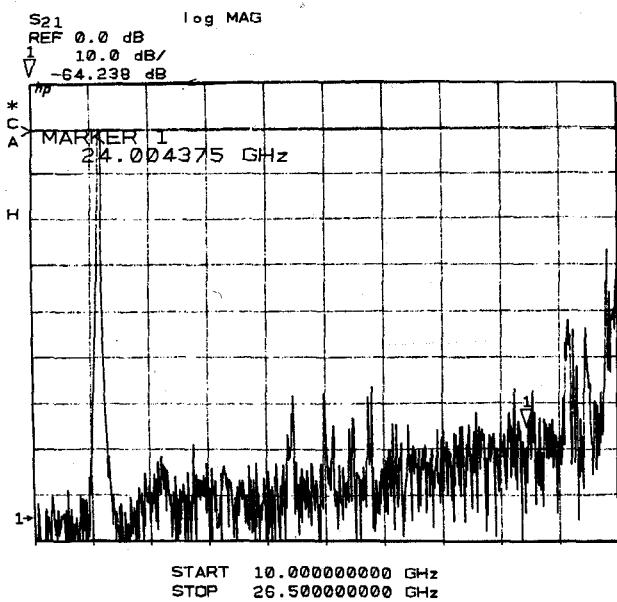

Figure 3. Mode Chart for a Right-Circular Cylindrical Resonator of Diameter D and Length L

Figure 4. Narrowband Performance of 12-GHz-Wide Stopband Bandpass Filter

CONCLUSIONS

A design technique for realizing narrow bandpass/wide stopband filters has been presented. This type of filter serves as a direct replacement for the bandpass/low-pass filters currently used on communications satellite payload output multiplexers. Equivalent loss

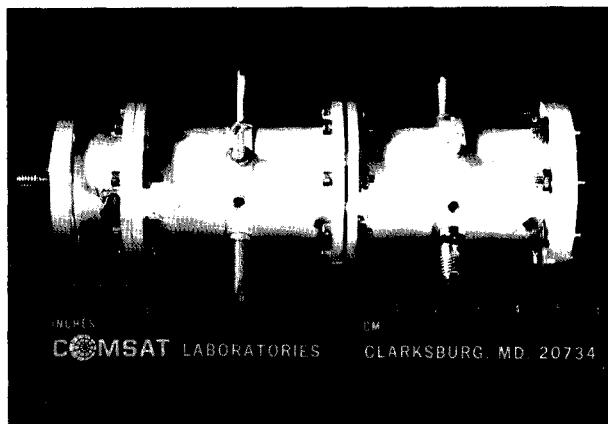


Figure 5. Wideband Performance of 12-GHz-Wide Stopband Bandpass Filter

performance can be achieved for substantial savings in mass and volume.

ACKNOWLEDGMENTS

The authors greatly acknowledge the assistance and support provided by C. Mahle, and the help provided by R. Kessler and J. Sanders, who were responsible for the fabrication and electrical measurements of the experimental filter, respectively.

Figure 6. 12-GHz-Wide Stopband Bandpass Filter

REFERENCES

- [1] A. E. Atia and A. E. Williams, "New Types of Waveguide Bandpass Filters for Satellite Transponders," *COMSAT Technical Review*, Vol. 1, No. 1, Fall 1971, pp. 21-43.
- [2] R. R. Bonetti and A. E. Williams, "Application of Dual TM Modes to Triple and Quadruple Mode Filters," *IEEE Transactions on Microwave Theory and Techniques*, Vol. MTT-35, December 1987, pp. 1143-1149.
- [3] R. R. Bonetti and A. E. Williams, "A Hexa-Mode Bandpass Filter," 1990 IEEE MTT-S International Microwave Symposium, *Digest*, pp. 207-210.
- [4] G. Matthaei, L. Young, and E. Jones, *Microwave Filters, Impedance-Matching Networks and Coupling Structures*, New York: McGraw-Hill, Chapter 5.